Increased motion and travel, rather than stable docking, characterize the last moments before secretory granule fusion.
نویسندگان
چکیده
The state of secretory granules immediately before fusion with the plasma membrane is unknown, although the granules are generally assumed to be stably bound (docked). We had previously developed methods using total internal reflection fluorescence microscopy and image analysis to determine the position of chromaffin granules immediately adjacent to the plasma membrane with high precision, often to within approximately 10 nm, or <5% of the granule diameter (300 nm). These distances are of the dimensions of large proteins and are comparable with the unitary step sizes of molecular motors. Here we demonstrate with quantitative measures of granule travel in the plane parallel to the plasma membrane that secretory granules change position within several hundred milliseconds of nicotinic agonist-induced fusion. Furthermore, just before fusion, granules frequently move to areas that they have rarely visited. The movement of granules to new areas is most evident for granules that fuse later during the stimulus. The movement may increase the probability of productive interactions of the granule with the plasma membrane or may reflect the pull of molecular interactions between the granule and the plasma membrane that are part of the fusion process. Thus, instead of being stably docked before exocytosis, granules undergo molecular-scale motions and travel immediately preceding the fusion event.
منابع مشابه
Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies.
Our current notions of different granule pools, granule interaction with the plasma membrane, and ultimately granule and plasma membrane soluble N-ethylmaleimide-sensitive-factor attachment protein (SNARE) interactions, result largely from inferences based upon biochemical alterations of secretion kinetics. Another view of events comes from studies using total internal reflection fluorescence m...
متن کاملGranuphilin exclusively mediates functional granule docking to the plasma membrane
In regulated exocytosis, it is generally assumed that vesicles must stably "dock" at the plasma membrane before they are primed to become fusion-competent. However, recent biophysical analyses in living cells that visualize fluorescent secretory granules have revealed that exocytic behaviors are not necessarily uniform: some granules beneath the plasma membrane are resistant to Ca(2+)-triggered...
متن کاملMotion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.
Total internal reflection fluorescence microscopy was used to monitor changes in individual granule motions related to the secretory response in chromaffin cells. Because the motions of granules are very small (tens of nanometers), instrumental noise in the quantitation of granule motion was taken into account. ATP and Ca2+, both of which prime secretion before fusion, also affect granule motio...
متن کاملImaging exocytosis of single insulin secretory granules with evanescent wave microscopy: distinct behavior of granule motion in biphasic insulin release.
To study insulin exocytosis by monitoring the single insulin secretory granule motion, evanescent wave microscopy was used to quantitatively analyze the final stage of insulin exocytosis with biphasic release. Green fluorescent protein-tagged insulin transfected in MIN6 beta cells was packed in insulin secretory granules, which appeared to preferentially dock to the plasma membrane. Upon fusion...
متن کاملSnapin mediates insulin secretory granule docking, but not trans-SNARE complex formation.
Secretory granule exocytosis is a tightly regulated process requiring granule targeting, tethering, priming, and membrane fusion. At the heart of this process is the SNARE complex, which drives fusion through a coiled-coil zippering effect mediated by the granule v-SNARE protein, VAMP2, and the plasma membrane t-SNAREs, SNAP-25 and syntaxin-1A. Here we demonstrate that in pancreatic β-cells the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 40 شماره
صفحات -
تاریخ انتشار 2007